Cow behavior recognition based on image analysis and activities
نویسندگان
چکیده
For the rapid and accurate identification of cow reproduction and healthy behavior from mass surveillance video, in this study, 400 head of young cows and lactating cows were taken as the research object and analyzed cow behavior from the dairy activity area and milk hall ramp. The method of object recognition based on image entropy was proposed, aiming at the identification of motional cow object behavior against a complex background. Calculating a minimum bounding box and contour mapping were used for the real-time capture of rutting span behavior and hoof or back characteristics. Then, by combining the continuous image characteristics and movement of cows for 7 d, the method could quickly distinguish abnormal behavior of dairy cows from healthy reproduction, improving the accuracy of the identification of characteristics of dairy cows. Cow behavior recognition based on image analysis and activities was proposed to capture abnormal behavior that has harmful effects on healthy reproduction and to improve the accuracy of cow behavior identification. The experimental results showed that, through target detection, classification and recognition, the recognition rates of hoof disease and heat in the reproduction and health of dairy cows were greater than 80%, and the false negative rates of oestrus and hoof disease were 3.28% and 5.32%, respectively. This method can enhance the real-time monitoring of cows, save time and improve the management efficiency of large-scale farming.
منابع مشابه
Object Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کامل